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ABSTRACT 

The available theories for two-dimensional airfoils in uniform and non- 

uniform shear flows of infinite extent are reviewed, and an image analysis is 

presented to make these results applicable to shear flows of finite extent. 

Experiments with a two-dimensional symmetrical Joukowsky airfoil in uniform 

shear flow and in simulated two-dimensional propeller slipstreams are described, 

and the results are compared with the applicable theory.  It is found that the 

airfoil section characteristics can be predicted with good accuracy at all 

positions tested in the slipstream. 
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INTRODUCTION 

The effect of a propeller slipstream interacting with a wing is a classical 

problem which has been present since the introduction of the airplane. The 

propeller-driven aircraft has, with few exceptions, evolved into a tractor con- 

figuration with the propeller situated ahead of the lifting surfaces, and portions 

of these surfaces are then subjected to a high velocity slipstream.  Hence in 

calculating the wing characteristics, one should allow for the fact that the wing 

is acted upon by a non-uniform stream; that is, the uniform free stream with the 

superimposed non-uniform propeller slipstream. 

This problem has been the subject of theoretical research for a number of 

years.  One of the earliest efforts was that of Koning in 193^» in which the 

slipstream was taken to be uniform and with a velocity slightly larger than that 

of the free stream.  These results were subsequently extended by Graham, Lagerstrom, 

2 3 
Lieber, and Beane to allow for larger slipstream velocities, and by Rethorst  to 

include a more realistic model of the slipstream boundary.  In all these cases the 

slipstream is assumed to have no gradients of velocity.  It is tacitly assumed 

that the influence of slipstream velocity gradients on wing lift is small in com- 

parison with the gross effects of the high velocity jet interacting with the wing. 

Tsien in 19^3 investigated the influence of vertical gradients of velocity 

on a thick symmetric profile.  In that research a two-dimensional model in a 

stream with a linear velocity gradient was considered, and it was found that 

because of the interaction of the gradients with the wing thickness, the wing 

characteristics were substantially different from those obtained in uniform flow. 

This early result was subsequently augmented in an investigation by von Karman 

5 
and Tsien^ in which Prandtl lifting line theory was reformulated for a flow with 



spanwise gradients of velocity.  As noted in that paper, the complete solution 

of a wing in non-uniform flow with both spanwise and vertical gradients of velocity 

requires a complete knowledge of the section characteristics including the effects 

of vertical gradients of velocity.  The use of these characteristics in the Kaman- 

Tsien lifting line theory would enable one to treat the complete problem. 

The Cornell Aeronautical Laboratory has been conducting a program of research 

on the aerodynamics of STOL/VTOL configurations.  Included in this program is 

research on the influence of vertical gradients of stream velocity on the section 

characteristics of thick airfoils.  The first part of this investigation was 

devoted to an extension of Tsien's theory for symmetric Joukowsky sections to 

include camber , and was undertaken to provide a basis for calculating the aero- 

dynamics of the highly flapped wings, or alternatively highly cambered wings, 

characteristic of vectored slipstream configurations.  This research was continued 

in experimental investigations of two-dimensional airfoil characteristics in two- 

dimensional propeller-like slipstreams. The purpose of this report is to present 

the results of the experimental research and to present methods for applying 

Sowyrda's  theory in determining section characteristics.  In this connection, 

the first section is devoted to a review of the applicable theories for airfoils 

in flows with linear and non-linear vertical gradients of velocity.  The second 

section presents the experimental results and compares them with the appropriate 

theory. 



THEORY 

Considering the slipstream of an unyawed propeller, the important features, 

as regards its interactions with a wing, are that the longitudinal velocity distri- 

bution is axially symmetric, and it is roughly V-shaped as indicated in Figure 1. 

Figure 1 TYPICAL SLIPSTREAM VELOCITY DISTRIBUTION 

In addition there is a rotational velocity component which is axially asymmetric 

and a function only of radial position. In anticipation of a final lifting line 

development, the rotational velocity component can be neglected in determining 

airfoil section characteristics since this component will only alter the section 

angle of attack. This component must of course be included in the final lifting 

line development. 



Referring to Fig. 1, it can be seen that there are three important slip- 

stream features to be considered.  In the immediate vicinity of the slipstream 

axis, the velocity distribution is markedly nonlinear, a region of non-uniform 

shear.  Farther out in the slipstream the velocity distribution is approximately 

linear, a region of uniform shear. Now if the influence of the slipstream boundary 

could be neglected, one might expect that non-uniform shear theory would apply in 

the vicinity of the slipstream axis, and uniform shear theory might be valid 

further out in the slipstream. The third important effect, slipstream boundary 

interference, can be included using an appropriate image analysis. The theory 

for each of these items will be reviewed in the rest of this section. 

Uniform Shear 

As noted in the Introduction, the two-dimensional theory for thick 

if 
Joukowsky profiles in uniform shear was reported by Tsien , and was subsequently 

extended by Sowyrda to profiles with camber. The important aspects and the 

results of these theories will be reviewed here; the details of the development 

can be obtained in the original references. 

Figure 2 AIRFOIL AND SHEAR STREAM SYSTEM 



Consider the model shown in Fig. 2 with the remote stream velocity given 

by U-   U0(l+I< ■*•),  where U    is the undisturbed velocity at the position, /u-     , 

above the airfoil midchord position, U0     is the undisturbed velocity at the air- 

foil midchord position,  k  is the shear parameter defining the linear velocity 

gradient, and ^o  is the airfoil reference chord length.  The important feature 

of this flow is that at locations far upstream of the airfoil, the vorticity is 

constant throughout the stream. Now since it is assumed that the flow is inviscid 

and incompressible, it follows that the vorticity must be everywhere the same 

throughout the entire flow field. 

In writing down the stream function for the undisturbed flow and super- 

imposing a disturbance stream function to describe the entire flow field, it is 

found that because the vorticity is everywhere the same, the disturbance stream 

function satisfies Laplace's equation.  Therefore, any solution to Laplace's 

equation, combined with the stream function for the undisturbed flow and subject 

to the appropriate boundary conditions, will yield a solution to the airfoil 

problem.  The boundary conditions are that there be no flow through the airfoil, 

that the Kutta condition be satisfied at the airfoil trailing edge, and that the 

airfoil disturbances vanish at infinity. 

Since Laplace's equation holds for the problem, the powerful Joukowsky 

transformation can be applied, subject to certain restrictions.  This allows 

one to obtain an exact potential solution to the problem, including the effects 

of thickness and camber. The exact results for the lift and pitching moment 

about the airfoil midchord are given in Refs. k  and 6 as a function of the stream 

shear, k  > and the airfoil shape parameters.  The drag on the airfoil is iden- 

k  6 tically zero, since it is a two-dimensional closed body in uniform shear ' 

subject to no spanwise velocity variations. Considerable insight into the 



effects of stream shear on the airfoil characteristics can be obtained by special- 

izing the results of Ref. 6 to the case of small airfoil thickness and camber. 

The airfoil maximum thickness and camber, to the second order in the airfoil shape 

parameters, are given by 

r = t/*, = a0(l + a,e) (1) 

h/o = - 
a,o90 (2) 

where t is the maximum thickness, h is the maximum height of the airfoil 

camber line, and <*<, and G0 are airfoil shape parameters defined in Ref. 6. 

The lift coefficient and moment coefficient about the airfoil midchord are, to 

the first order in thickness and camber 

c>-- 7ß fe-^Srl^^'fir^C'^J 

c^^n^-l'*-^ [-#]f oc + r"ir k 
6+ 

(3) 

w 

where a positive pitching moment is a stalling moment. 

Equations (3) and C^) show that the effect of shear is to cause a small 

increase in the slope of the lift and moment curves determined by the stream 

shear and the airfoil thickness. More important, there is an overall increase 

in the lift and moment.  This overall increase in lift is proportional to the 

shear and the airfoil thickness and camber, while the overall increase in moment 

is a function only of the shear and thickness.  In addition it will be noted in 

Eq, (3) that the thickness and camber Interactions with the shear are super- 



imposed. This is true for thin airfoils with small camber. However, the exact 

theory shows that in addition there is a coupling between thickness and camber 

which also increases the lift. For certain values of the shear, it is found 

that this coupling effect is as large as the thickness effect and the camber 

effect . 

In order to have a physical feel for the magnitude of each of these shear 

interactions, consider a 173» thick airfoil with 11^ camber in a shear flow de- 

fined by |( =5« This corresponds to about the steepest velocity gn lient 

found in a propeller slipstream.  In Ref. 6 it is shown that at zero angle of 

attack, the lift obtained with no shear is  CL ■&   1.6, while with  k  = 5» 

the lift is  CL «i '+.9. This increment in lift of ACL   &        3.3 is due 

to a pure thickness effect, a pure camber effect, and a coupling of thickness 

and camber effects. Calculations indicate that for this particular combination 

of shear and airfoil parameters, each of these three effects is roughly the 

same. 

Non-Uniform Shear 

Some insight into the influence of non-uniform shear flows on airfoil 

section characteristics can be obtained from the two-dimensional investigations 

7 Q 
made by Jones ' .  In Ref. 7i Jones considers a thin cambered airfoil in a 

flow with a parabolic velocity distribution given by U-U, \l *" Sfr i'lo ) » 

where U     is the undisturbed stream velocity at a height, ^     , above the plane 

of flow symmetry, Uf     is the undisturbed stream velocity in the plane of flow 

symmetry, and  ^  is a constant defining the non-uniform shear.  In contrast to 

the uniform shear flow just described, this undisturbed flow is characterized by 

a stream vorticity which is not constant, but varies between streamlines.  From 



Helmholtz's law for the rate of change of vorticity in a fluid, it is known that 

the vorticity must be conserved along a streamline, implying that the disturbance 

stream function for a profile in this flew satisfies the flow equation, 

V   f,  =   f (f)        . This then leads to the requirement that the disturbance stream 

function satisfy the flow equation 

v2/; = f(n + w,)~f(K) (5) 

where fL       is the stream function of the undisturbed stream. 

The fundamental difficulty in treating non-uniform shear flows is apparent 

by comparing Eq. (5) with its counterpart in uniform shear flow. In uniform 

shear flow it is necessary that the disturbance stream function satisfy Laplace's 

equation, which then allows one to employ conformal transformation techniques. 

Such is not the case in non-uniform shear flows, and one must employ other methods, 

Jones obtains approximate solutions for the lift, drag, and pitching moment 

of a slightly cambered thin airfoil in non-uniform shear flow by assuming the 

airfoil thickness is small and by assuming that 6a, (-~) &■ I     •    Through a separ- 

ation of variables, Jones reduces the problem to a pair of Mathieu differential 

equations which are solved subject to the same boundary conditions employed in 

the uniform shear development. His results for the lift and moment about the 

midchord position are, to the first order in oC     and ^-Hry , 

c,  = p/Z     \J*K, 

M 
C*- p/z  U0

Z^ 

X Zif^Cl-h I.I 16 e,)oc + 2•£-] 

foe [/..Ö6^/] 

(6) 

(7) 

mmmmm 



where U0     is the undisturbed stream velocity at the airfoil midchord position. 

To the same approximation, the corresponding results in uniform shear flow are the 

usual thin airfoil results. 

cL -z*(«*^-) (8) 

CM = -f *- (9) 

It is first noted in Eqs. 3 and k  that for uniform shear, if the product of the 

airfoil thickness and shear parameter is neglected and if the shear is assumed 

small, the theory reduces to uniform flow theory, and there is no effect of shear. 

Comparing these with Eqs. 6 and 7, it then appears that Jones, in stipulating 

small airfoil thickness and, in essence, small shear, loses the shear effect on 

lift and moment which Ref. 6 shows to be associated with thickness and camber. 

However, Jones demonstrates that one effect of shear is to increase the slope of 

the lift and moment curves.  Moreover, these increases do not depend on the local 

shear, «2. —*-   , but rather on the derivative of shear,  <Z.  .  This result then 

indicates that for a wing in a propeller slipstream near the axis of symmetry, 

the lift and moment curves would exhibit higher slopes in proportion to «,  , 

the first derivative of shear or the second derivative of the velocity,, 

Jones, in his subsequent investigation,  treated.profiles of elliptic cross 

section in a stream with a velocity distribution given by U - Ul yooaK/{^/J.) , 

where yt      is an arbitrary reference length. This problem is analogous to the one 

just described in that the stream vorticity is not constant but varies from stream- 

line to streamline.  The development of the flow equation follows that for the 

cambered thin airfoil to the point where the three boundary conditions are applied. 

For the elliptic profile, the Kutta condition is not applicable because there is 



no sharp trailing edge.  Consequently, there is no boundary condition fixing the 

circulation about the profile. 

In order to fix the circulation, Jones makes the assumption that the circu- 

lation around the profile is identically that around the same contour in the 

4 
undisturbed stream.  This is the same assumption used by Tsien in treating a 

9 
circular cylinder in uniform shear flow, and by Murray and Mitchell in treating 

a circular cylinder in non-uniform shear flow. This condition is correct for 

uniform shear flows since it follows from the fact that the vorticity is everywhere 

the same in a disturbed uniform shear flow. However, for non-uniform shear flows, 

the applicability of this boundary condition is open to question since the vorti- 

city varies between streamlines. 

Jones determines the lift and moment for an ellipse of any thickness in a 

stream of small non-uniform shear.  To the first order in thickness and the second 

order in angle of attack, his results for the lift are 

CL " -fik   U0*. (10) 

where )^.     is the undisturbed stream shear at the airfoil position, the local 

shear.  The comparable approximation for the lift in uniform shear is 

c.  = 
^ Uo<c (11) 

Now Jones' result for non-uniform shear, Eq, (10), shows that in the limit of 

\f   a 0        > a uniform stream, there is no lift on the elliptic profile regardless 

of angle of attack.  This might be anticipated since the profile lacks a sharp 

trailing edge. Considering the zero angle of attack condition with shear, Eqs. 

10 



(10) and (11) are seen to yield equivalent predictions for the lift increment due 

to shear if for the non-uniform shear flow the local shear is used.  This suggests 

that in non-uniform shear flows, the lift increment due to shear could be predicted 

on the basis of uniform shear theory. 

The fact that Jones' result for the elliptic profile does not yield a lift 

curve slope that agrees with either uniform shear theory, or more important, his 

result for a thin airfoil in non-uniform shear, is interesting.  It seems plausible 

that this is associated with the lack of a sharp trailing edge on the elliptic 

profile, and that his result for the thin cambered plate is the better description 

of airfoil lift curve slope in non-uniform shear flow.  Since this result does not 

allow for thickness effects, the question remains as to how to account for it in 

non-uniform shear, though one might intuitively expect that it would be the uniform 

shear result, superimposed on the thin airfoil result. 

Slipstream Boundary Interference 

It can be expected from the theory for a uniform two-dimensional slipstream" 

that, in general, the characteristics of an airfoil immersed in any slipstream 

will be different from those in a flow without the discontinuity.  These changes 

stem from the fact that there can be no flow through the boundary and, for practi- 

cal purposes, the pressure on both sides of the boundary must be equal to the 

ambient stream pressure.  In the case of a uniform slipstream, the two-dimensional 

slipstream boundary effects can be calculated by considering the combined effects 

of two equivalent systems of airfoils. One system consists of the actual airfoil 

and an array of images in a uniform stream with a velocity equal to that of the 

slipstream.  By suitably arranging the image spacing and strength, this system 

duplicates the disturbance velocities inside the slipstream.  The other system 

consists of an equivalent or effective airfoil in a uniform stream with a velocity 

10 

11 



equal to that of the external stream.  The strength of this equivalent airfoil is 

adjusted so that it duplicates the disturbance velocities external to the slipstream. 

In these systems the airfoil parameters and the image spacing are adjusted so that 

the pressure and flow continuity requirements are satisfied at the slipstream 

boundary, and the disturbance velocities at the original airfoil are calculated 

using the system of image airfoils.  In this calculation it is usually assumed 

that the volume effect stemming from airfoil thickness is negligibly small, and 

only the effects associated with lift are considered. 

An analogous image analysis for airfoils in two-dimensional non-uniform 

slipstreams can be derived by employing certain assumptions.  In this analysis 

the first order effects of both lift and airfoil thickness will be considered, 

and it will be assumed that the theory for Joukowsky airfoils in uniform shear 

flows is adequate for establishing the flow model. 

Considering symmetrical airfoils, the disturbance stream function for a 

Joukowsky section in uniform shear flow is, to the first order in thickness and 

if 
angle of attack : 

where  r  and  6  are defined in Fig. 2.  Equation (12) shows that in this 

approximation, the lift and thickness effects are independent, and the disturbance 

stream function can be taken to be 

% = ^ (oc) + y, M (13) 

12 

«p""^*»"«»««« 



Moreover, it is seen that to this order of approximation, the stream function is 

independent of the shear parameter, k  , so that in calculating the boundary 

interference, the image system need not simulate the stream shear so long as the 

correct wing lift is used and the actual stream velocities are used in satisfying 

conditions at the slipstream boundary. Accordingly, the disturbanc? velocities 

inside the slipstream can be calculated using an image system, shown in Fig. 3i 

consisting of a pair of images described by the stream function. 

V, = ^ # frO - ^ % M (OA) 

. 

and the array of their repeated reflections in a uniform stream of velocity, Ü0 

Similarly, the disturbance velocities outside the slipstream can be calculated 

using the equivalent system of a wing, described by the stream function, 

y = JL %(<*)*£?, (*.) (15) 

in a uniform stream of velocity, Ü       . 

The conditions to be satisfied at the slipstream boundary are that the 

pressure be continuous across the boundary and that there be no flow through 

the boundary.  The latter condition requires that 

Ye. 

U'+^ir^ 
(16) 

where Mf     and -*^V are the disturbance velocities in the -)£  and  y 

direction, respectively, the prime denotes conditions just outside the boundary, 

and the subscript, &      , denotes conditions just inside the boundary.  Assuming 

13 
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the disturbance velocities are small in comparison with the freestream and slip- 

stream velocities, Eq. (16) can be expanded in terms of the disturbance velocities 

to yield the first order boundary condition. 

<4 

-«^ 

u' (17) 

The condition that the pressure be constant across the boundary is obtained by 

applying Bernoulli's equation on.  both sides of the boundary and by expanding these 

relations in terms of the disturbance velocities to obtain the first order boundary 

condition, 

M,-«^   = u'^' 
(18) 

The boundary conditions, Eq. (17) and (18), are to be satisfied by calculating 

the disturbance velocities at the boundaries from the original wing and its image 

system, Fig. 3C, and by calculating the disturbance velocities at the boundaries 

from the equivalent system, Fig. 3b, and using these in the boundary conditions 

to determine the constants, if,   y  ^   i J1   y   and   ^ .  These constants fix the 

lift and the thickness of the images and the equivalent wing, and if these are 

such as to satisfy the boundary conditions, the image system duplicates the effects 

of the slipstream boundary.  It can then be used to calculate the disturbance 

velocities at the original airfoil position due to the presence of the slipstream 

boundary. 

Using a suitable model for the lifting wing with thickness, the slipstream 

boundary effects can be calculated. Tsien's model (Eq. 12) could be employed in 

this calculation; however, because this model consists of only a vortex, a pair 

15 



of dipoles, and a pair of quadripoles, it breaks down in regions close to the air- 

foil.  Instead, the model used here will be a source and sink model with a length 

equal to the airfoil chord to simulate the effects of airfoil thickness, and a 

single vortex located at the airfoil quarter chord to simulate the effects of 

airfoil lift. The disturbance stream functions for each of these models are 

"'«=4^- *-(*'*?'> (19) 

(20) 

where J^       is the strength of the source and sink, S      is their spacing, and 

^ — ^ — -y    .  In order to be consistent with the preceding development, 

it is assumed that the airfoil thickness ratio is small so that only the first 

order thickness terms are retained.  With this approximation the disturbance 

velocities from the images follow 

3 

2 .. /,. * 

L * 
Ä .   -, 2 

OfW r~z 

U0*,zr I*. 
g^t.c*") = "V- pT^cSSjTTy äT^TTTi^i 

(21) 

(22) 

(23) 

(24) 

The question arises as to where on the airfoil the corrections to be ob- 

tained with Eqs. (21-2^) are to be applied.  The form of the relations demonstrates 

16 



11 

that the effect of the boundary is to subject the airfoil to a disturbance field 

which varies along the chord. Hence, the airfoil is in a curved flow field, or 

equivalently, the airfoil characteristics will be those of a cambered section. 

There are a number of techniques normally employed to account for this variation. 

In particular, the lift is taken to be known and the angle of attack is to be 

obtained. One could average the appropriate relations to obtain the average 

longitudinal disturbance velocity, sin average angle of attack correction, and an 

average camber or flow curvature correction.  The method used here to account for 

the lateral component of the disturbance velocity is that originated by Pistolesi 

12 and used in the Weissinger lifting line theory .  It is shown that for two-dimen- 

sional thin wings with circular arc camber, the wing characteristics are predicted 

exactly if the wing boundary conditions are satisfied at the 75^ chord station. 

The use of this criterion in the present problem is equivalent to assuming that 

the flow curvature at the wing has a constant radius of curvature. 

With regard to the longitudinal component of the disturbance velocity, it 

is noted that a weighted average value should be used.  It is assumed here that 

this average value can be approximated with the disturbance velocity at the air- 

foil quarter chord. 

Returning to the application of the boundary conditions at the slipstream 

edge, these are applied by calculating the disturbance velocities at the slip- 

stream boundary using Eqs. (21-2^+), the image system (Fig. 3c), and the equivalent 

wing (Fig. 3b).  These disturbance velocities must then satisfy Eqs. (17) and (18). 

After some algebraic manipulations it follows that the boundary conditions are 

satisfied for: 

' - (&) 
V, = 
- /.K.^) ^=0-A) Ik 

u0 
(25) 
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where 

"r   = 
-(^ 

' \Z 

•we 4 * 0* v -^- (26) 

and     6   r   S/W  >   r| = H/O   . 

The slipstreajn boundary interference on the wing is expressed as a change in 

angle of attack and stream velocity.  These are calculated from the geometry 

of Fig. 3 using Eqs. (21-2^), and employing the substitution from thin airfoil 

theory,  T r «.„ 

r  to 
/ 

4^(2 T?-/-€)' 

* «a 

- a» 

a/9,0* 

Aot 
j) 7- 

Zn(Z-n-l-€) 
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(29) 

(30) 



-w. '/Uo 
ItZZ - _ _L y [ i 

/-€ 
n*! 

2n- l + e (31) 

"*M   _ 
^r 

-Z 
- [fr)

z(27l-;+£>
2-3//6]%4r)Y2Ä-/ + e)* 

(32) 

4ri*(Znf+ 3//6 
^ P'ja(^)i-3//6]a+^

a'ar1)
S 

The results given by Bqs. (25-32) can be used in conjunction with an 

appropriate theory for a wing in a shear flow of infinite extent to predict the 

two-dimensional slipstream boundary interference.  This is done by noting that the 

lift can be expressed as 

L^/o/z   ^[l^-j^A^C^] 
(33) 

where   Cu        is the theoretical lift increment due to shear, camber, and thick- 

9CL
S 

ness, 
9oc 

is the theoretical lift curve slope, oC        is the geometric angle 

of attack,  A oC is the angle of attack correction given by Eqs. (29) and (30) 

and 

u2 ^ b^] 
It follows that the corrected lift coefficient,  CL  , based on the velocity, 

u0 , is given by the following quadratic equation 

t 
*»• 



{* mtx^Hb^i] ^(^2 && ^ 06 

(3^) 

In Eq. (3^) the subscript, 7*     , denotes the corrections obtained from Eq. (30) 

A*. i    \ M'i./ua or C32;, and the terms,—" 

Eq. (31) and (29).* 
W 

, are obtained respectively from 

Similarly the pitching moment can be resolved into a component independent 

of lift and a component due to C. acting at the aerodynamic center. 

H* tfz (/>c2 c*   -»- ^ ^2  a**c. (35) 

yielding the following for the pitching moment coefficient,   CM , based 

upon the velocity, U0 

vh^-l]^^'^^, 
(36) 

where  C     and   ^    are the theoretical moment coefficient about the 

*  It should be noted that Eq. (3^+) can be simplified considerably if the 

boundary corrections are small.  In this case the products of the corrections 

can be neglected to yield 
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I 
aerodynamic center and the theoretical center of pressure position. 

The slipstream boundary corrections given by Eqs. (27-32) have been 

calculated for typical slipstream heights on a high speed computing machine 

using the first 100 terms, and are plotted in Fig. (4) through (9) as a func- 

tion of the airfoil location in the slipstream.  It should be noted that the 

method of images does not apply in the limit of the airfoil located at the 

boundary.  Moreover, the models used in the image system are inapplicable in the 

vicinity of the boundary. 

Considering Figs.(6) and (7), it is seen that one effect of the boundary 

is to cause a change in the slipstream velocity as the airfoil is moved off the 

centerline. The effects of this change in velocity would appear as non-linear 

airfoil characteristics.  Considering a typical slipstream, the boundary inter- 

ference causes a decrease in stream velocity and hence a loss in lift.  This 

effect is minimized at the slipstream centerline where the lift effect is zero 

(Fig. 6) and only the thickness effect (Fig. 7) enters.  Since the lift effect 

is asymmetric about the slipstream axis while the thickness effect is symmetric, 

one could reduce this adverse effect to zero, or perhaps obtain a beneficial 

interference effect by locating the airfoil below the slipstream axis.  The 

effect of decreasing the ratio of slipstream height to wing chord is to cause a 

further loss in lift. 

Figures 8 and 9 show that another effect of the slipstream boundary is 

to adversely influence the lift by decreasing the wing angle of attack.  This 

effect is also more pronounced for small H/O •  At the slipstream axis, the 

effect of wing thickness vanishes and the effect of wing lift is a minimum. 

The thickness effect is asymmetric about the slipstream axis (Fig. 9) and the 

lift effect is symmetric (Fig. 8), suggesting that the two might cancel at 
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certain positions below the slipstreajn axis and for certain angles of attack.  It 

should be noted, however, that the thickness effect is usually smaller than the 

lift effect so that beneficial interference from the boundary is unlikely. 
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EXPERIMENT 

An experimental program of research is in progress at the Cornell Aero- 

nautical Laboratory and is devoted to investigating the aerodynamics of airfoils 

in non-uniform flows. The specific aim of this research is first to check the 

theory for wings in uniform shear, and then to extend these results to the case 

of two-dimensional and axially-symmetric slipstreams. The research on two- 

dimensional airfoils in a flow with uniform shear and in simulated two-dimensional 

slipstreams is largely completed, and the results are presented here. 

The test flows used in this program were (l) a uniform flow, (2) a flow 

with small uniform shear, (3) a two-dimensional propeller-type slipstream with 

small shear and d) its equivalent uniform slipstream, (5) a two-dimensional 

propeller-type slipstream with large shear and (6) its equivalent uniform slip- 

stream.  The equivalent uniform slipstream was defined as a two-dimensional slip- 

stream of equal dimensions with a velocity equal to the average velocity in the 

non-uniform slipstream. The momentum in the uniform and non-uniform slipstreams 

were then roughly equivalent.  These equivalent uniform slipstreams were included 

in the present research in order to obtain a check on the image analysis and to 

experimentally demonstrate the importance of shear in estimating section charac- 

teristics. 

The experiments were conducted out in the subsonic leg  of the C.A.L. 

Ik 
One Foot High Speed Wind Tunnel  .  This leg of the wind tunnel, shown in Fig. 10, 

has a test section with a cross section of 17" x 2'+" and is operated as a closed 

throat non-return type tunnel.  The wind tunnel operates at atmospheric stagna- 

tion pressure over a speed range of 0-l80 f.p.s.  The tunnel was modified for the 

present program to provide a longer test section. 
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The test flows were generated by non-uniform screens or grids placed across the 

wind tunnel test section upstream of the model.  In effect these screens produce 

the inverse of a propeller flow in that they remove energy from the free stream, 

and distribute the energy within the slipstream by selectively introducing losses. 

The advantages of this technique are that it affords a relatively simple method 

for generating two-dimensional propeller-like slipstreams and the test flows are 

easily repeated. Moreover, this technique can be used to generate axially- 

symmetric slipstreams and allows the systematic study of slipstream flow non- 

uniformities without the complication of the rotational flow component found in 

a propeller slipstream. 

In designing the screens for producing a uniform or non-uniform shear flow, 

it must be noted that the static pressure immediately behind the screen is not 

constant over the screen because non-uniform losses are being introduced.  Conse- 

quently, the flow expands from that at the screen to its final configuration, sind 

it is not possible to simply extrapolate the desired velocity distribution back 

to the screen to determine the required screen losses. 

15 
Owen and Zienkiewicz  have considered the flow produced by a non-uniform 

screen and present a method for designing screens to produce a uniform shear. 

Their method is restricted to two-dimensional flows with a linear velocity 

gradient and to screens which only slightly perturb the flow.  The present re- 

search is concerned with large non-uniform and discontinuous shear, and it was 

necessary to extend the theory of Ref, 15 to include these cases.  This extension 

is presented in Appendix I. 

This design method consists of postulating disturbance stream functions 

associated with the non-uniform screen which vanish at large distances from the 

screen.  Further these disturbance functions are different on either side of 
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the screen and equal at the screen.  It is required that the longitudinal velocity 

be continuous through the screen and that the vertical velocity change through 

the screen by a factor related to the local resistance of the screen.  These two 

conditions then fix the screen disturbance stream function as a function of the 

desired velocity distribution. The requirement that the static pressure be 

uniform across the flow at large distances from the screen and that on any stream- 

line the difference in total pressure be the local screen loss then relates the 

desired velocity distribution to the distribution of screen resistance. 

Having fixed the distribution of resistance, the screen design then re- 

duces to selecting the screen solidity necessary to produce the losses.  It is 

assumed that the local losses in a non-uniform screen are identical to those of a 

uniform screen with the same solidity, and existing experimental data and empirical 

relations  were used.  In designing the screens it was decided to consider solid- 

ities only in the range of 15$-85^. The lower limit was fixed by structural and 

fabrication considerations, while the upper limit was selected to insure that the 

screens would not choke.  These limits then fixed the maximum shear that could be 

generated. Experience gained with the first screen tested indicated that the 

available screen resistance data and empirical formulas were not applicable to 

the non-uniform screens, apparently because of the high Reynolds numbers on the 

screen elements. It was found that for large solidities the screen resistance 

was greater than the published data. A series of experiments was made with high 

solidity screens made of large diameter wire to determine the loss coefficient 

at high Reynolds numbers. These results are compared in Fig. 11 with other data 

and the empirical relations for low and high solidities. The C.A.L. data is seen 

to agree well with the high solidity relation, —/',    —  r»^—')      • 
p/2. U        \l-cr/ 

However, it was found that good agreement was obtained with the C.A.L. data and 
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that from Ref. 17 using the relation, 

Pi 2  U- 
-± cr 

o-o-y (37) 

Equation (37) was then used in all subsequent screen designs. 

The three screens used in the present research, shown in Figs,12, 13 and 

l'f, were constructed of 1/8" - 1/2" diameter bars spaced to provide the desired 

solidity, and supported in a steel frame. Early in the research it was found 

that in the regions of high solidity the observed velocity distribution differed 

markedly from the design value. This was attributed to the screen phenomenon 
-i o 

investigated by von Bohl .  Immediately behind a screen the flow consists of 

alternate wakes from each screen element and high velocity jets from between the 

elements. At a sufficient distance from the screen, viscous mixing between the 

jets and wakes has taken place so that a uniform flow is obtained,  von Bohl 

observed that at sufficiently high solidities, 37?^ - ^6% for polygonal screen 

elements, the jets tend to close around the wakes without mixing, resulting in 

lower losses than anticipated. 

It was concluded that this non-mixing phenomenon was occurring in the high 

solidity portions of the screens used in this research, and the metal honeycomb 

seen in Figa 12 through Ik  was added to the downstream side of the screens.  This 

honeycomb, about two inches thick, locally constrains the flow behind the bars and 

allows mixing to begin.  The honeycomb is bonded to the downstream side of the 

screen sind also serves to stiffen the structure. 

The uniform two-dimensional slipstreams were produced by using a uniform 

screen with an opening in it, and constraining the slipstream flow with metal 

plates.  The gap size, screen resistance, and plate spacing were fixed by 

^ 
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elementary mass flow considerations. 

The initial calibrations of the flows simulating two-dimensional slip- 

streams showed that viscous mixing and the sharp change in static pressure along 

the initial portions of the slipstream edges resulted in a flow which did not 

meet with the design requirements. This difficulty was rectified by constrain- 

ing the slipstreams with plates to a point about two airfoil chord lengths ahead 

of the test position. These plates allowed the slipstreams and external "free 

stream" to independently expand to the final design values. 

All test flows were calibrated using a 3/l6" diameter pitch-yaw pltot- 

static probe. The calibrations for the five test flows are shown in Figs. 12, 

13) and I't. These data are not corrected for the shear flow displacement 

effect.  The theory of Hall  shows that for the 3/l6" diameter probe used in 

this research, the displacement of the stagnation point is less than 1/2% of the 

slipstream half-height and is negligible.  The same theory shows, however, that 

the effect of shear on the probe is to distort the pressure distribution on the 

probe so that the usual pitch-yaw pressure probe will indicate flow angularity 

at zero angle of attack.  This effect was negligibly small for the experiments 

in small shear, but amounted to a flow angularity error of about 1° for a shear 

rate of  k ^ 3  • The flow angularity data were corrected for this effect 

using Hall's theory. 

The model used in this research was a two-dimensional Joukowsky airfoil of 

17% thickness spanning the wind tunnel (Fig. 15 and 16). Anticipating future 

tests in an axially symmetric slipstream, the wing was constructed and instru- 

mented to measure forces on a narrow section (a span of about 10% of the chord) 

of the wing at the midspan. A conventional three-component strain gage balance 

was used to measure the section lift, drag, and pitching moment. After assembly, 
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the entire wing was wrapped v.ith .005" thick sheet rubber to prevent flow between 

the sections of the wing. The balance system was then calibrated with the sheet 

rubber in place. 

The model was mounted in the wind tunnel on a yoke support (Fig. 16) on 

a conventional pitching system and was pitched about the airfoil midchord.  The 

gaps between the wing edges and the wind tunnel walls were sealed with Insulite 

plastic foam.  As shown in Fig. 16, provisions were made to bleed the tunnel side 

wall boundary layer in order to alleviate early wall boundary layer separation 

and its subsequent effects on the wing. The exact distribution of the wall 

porosity and suction settings were experimentally determined to maintain two- 

dimensional flow on the wing. 

The experiments consisted of measuring the lift, drag, and pitching moment 

on the airfoil in uniform shear and at various vertical positions in the uniform 

and non-uniform two-dimensional slipstreams.  In addition oil-film studies were 

made for certain conditions to investigate the boundary layer separation pattern. 
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RESULTS 

Uniform Shear 

The first of the experiments was to test the symmetric airfoil in uniform 

flow and in uniform shear flow (Fig. 9) in order to obtain a check on the theory 

for airfoils in uniform shear flow. These tests were run at an airspeed of 

100 m.p.h. at the airfoil position, and the Reynolds number based on the airfoil 

chord was ^.5 x 10 . The data were corrected using the conventional solid 

boundary corrections.  It can be shown that for uniform shear flow in a wind tunnel, 

the solid boundary corrections apply.  The lift and pitching moment data from these 

experiments are shown by the symbols in Fig. 17 and are compared with the appro- 

priate theory.  These data are referred to the undisturbed stream velocity at the 

airfoil position.  The theory is seen to overestimate the slope of both the lift 

curve and the moment curve.  This might be anticipated since Tsien's theory for 

airfoils in uniform shear flow reduces, in the limit of zero shear, to the 

classical thick airfoil theory including the thickness correction to the lift and 

moment curve slope.  In other uniform flow experiments, a thickness effect on the 

slopes of the lift and moment curve has been observed, but of a magnitude less 

than that predicted by theory.  This reduction in lift curve slope, presumably 

due to viscous effects, also occurs in shear flow. 

The increments in lift and moment due to shear have been determined by 

fairing the experimental data and subtracting the lift and moment measured in 

uniform flow.  This shear increment is plotted and compared with Tsien's theory 

at the bottom of Fig. 17.  It can be seen that the theory and experiment are 

in good agreement at small angles of attack where the separation effects are 

small, thereby confirming the theory. 
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The drag measured on the airfoil in uniform flow and uniform shear flow is 

presented in Fig. 18. Considering the uniform flow data, it is seen that the 

drag coefficient at zero lift is   C     ^     .0075 which is in good agreement with 

flat plate laminar skin friction theory when adjusted for thickness effects. 

The data obtained in uniform shear flow indicate a drag coefficient of about 

C   23   .002; much less than predicted by laminar theory.  Tsien's theory 

shows that there is no drag due to lift for two-dimensional sections in uniform 

shear flow, so that the observed drag reduction in shear flow must stem from an 

effect on skin friction. 

The effects of shear on flat plate laminar skin friction have been recently 

PO PH PP P^ 
investigated by Li  '  , by Glauert  , and by Ting  , and it is demonstrated that 

the effect of positive shear is to cause an increase in laminar skin friction. 

Applying these results to the present research, one would expect the drag on the 

airfoil upper surface to be increased by about ;$>, but the drag on the lower sur- 

face would be decreased a comparable amount since it is in negative shear.  Hence, 

the theory shows no net change in drag on the airfoil. 

It is believed that the observed drag behavior is associated with the method 

used in generating the shear flow.  In particular, the flow is generated by a 

screen composed of thick bars which introduce turbulence into the stream.  It 

appears that this turbulence is such as to cause a marked decrease in viscous 

drag.  As a check on this hypothesis, the airfoil was tested in a stream with a 

uniform high solidity screen at the normal position of the shear screen.  This 

uniform screen was constructed of 1/16" diameter wire, crudely corresponding to 

the elements of a shear screen, and only introduced turbulence in the stream. 

The drag data obtained under these conditions was about half that obtained in a 

uniform flow without artificial turbulence, and showed that screen-induced 
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turbulence is priraarily responsible for the low drags observed in shear flow. 

Slipstream with Large Shear 

Following this confirmation of uniform shear theory, a series of experiments 

was made with the symmetric Joukowsky airfoil in the  |< = 2 two-dimensional 

slipstream (Fig. I'f).  These experiments consisted of measuring the forces on 

the model at four positions in the slipstream, and the results are shown in 

Fig. 19.  The force and moment coefficients are based upon the undisturbed stream 

velocity at the airfoil position and have been corrected for tunnel wall inter- 

ference using the results of Appendix II.  The drag data are not presented because 

they reflect the unusual influence of screen-induced turbulence. 

The experimental data are compared in Fig, 19 with Jones' theoretical 

results for airfoils in non-uniform shear flow and with Tsien's results for 

airfoils in uniform shear flow.  Considering the data obtained on the slipstream 

plane of symmetry (Fig. 19a), it can be seen that the slipstream boundary correc- 

tions bring the theory and experiment into rather good agreement.  Indeed, the 

agreement is quite surprising since Jones1 theory is valid only for small values 

of the stream shear derivative,  «L  , while the experimental slipstream corres- 

ponded to a value of  ?• ^ 1.7»  The non-zero lift observed at aero angle of 

attack reflects the fact that Lhe airfoil was not located precisely on the plane 

of symmetry.  This lift increment at zero angle of attack is analogous to that- 

observed with airfoils in uniform shear flow and should be proportional to the 

airfoil thickness.' This thickness effect is not predicted by Jones, apparently 

because his analysis is restricted to thin airfoils and  small values of the shear 

parameter,  ^  , and products of the thickness and  4L-  were neglected. 

The most notable feature of the data in Fig. 19a is that a lift coefficient 

in excess of 3.0 was measured without any apparent signs of airfoil stalling. 
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^ This is substantiated by the moment data which shows there was no unusual motion 

of the center of pressure characteristic of a spreading region of boundary layer 

separation. This result is viewed with some reservations since it is recognized 

that unusual boundary layer separation patterns might be influencing the data. 

No boundary layer observations were made during this test; however, during the 

sxperiments in uniform shear flow, oil film techniques were employed to observe 

the separation patterns. A typical result is shown in Fig. 20.  In this experi- 

ment the oil, colored with lamp black, was introduced from the trailing edge so 

that the oil was confined to the separated regions.  One characteristic of the 

separation process was the formation of strong vortices standing normal to the 

surface; the dark regions in photograph.  Under certain conditions a pair of 

these vortices would stand on either side of the instrumented section and ener- 

gize the flow over the section to locally delay separation.  It is not clear if 

this occurred with the data in Fig. 19a, so the extreme maximum lift coefficients 

* 
must be substantiated with more detailed experiments.  It is noted, however, 

that a similar result was obtained by Brenckman  in experiments with a two- 

dimensional wing in a propeller slipstream.  His results, obtained on the 

propeller centerline, showed a "des balling effect" both within the slipstream 

and exterior to the slipstream; that is, the maximum lift coefficent with a 

slipstream was about 20^ more than in a comparable uniform stream. 

The data obtained at Ö/H    =   .23 are compared with both uniform and non- 

Subsequent experiments with the airfoil near the slipstream plane of symmetry 

and employing boundary layer visualization techniques have confirmed the ob- 

served maximum lift and have shown that separation was acceptably two-dimen- 

sional. These results will be covered in a forthcoming report. 
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uniform shear theory in Fig. 19b. The importance of two-dimensional slipstream 

boundary interference on airfoil lift can be seen by comparing Tsien's theory 

with and without the boundary correction. The boundary correction causes about 

a 30^ loss in lift. Comparing the corrected Tsien's theory with the data, the 

theory underestimates both the lift curve slope and the angle of attack for zero 

lift.  It appears that even though the shear is quite constant at this location, 

Tsien's uniform shear theory is inapplicable because of the close proximity of 

the region of non-uniform shear. The airfoil lower surface is within a quarter 

airfoil thickness of the slipstream center-plane and is influenced by the non- 

uniform shear,  Jones' non-uniform shear theory would be applicable if the shear 

were smaller and if the theory included the effect associated with thickness and 

shear.  On the basis of Tsien's exact theory for uniform shear and Jones' theory 
q 

for an ellipse in non-uniform shear one might anticipate that if this term were 

included in Jones thin airfoil theory, it would predict a lift increment given by 

ACL = "s- k- t*  > and a moment increment given by 2\CM = T-r" k. f •,  where 

K       is the local shear.  These Increments have been added to Jones' thin 

airfoil theory and are compared with the data in Fig. 19b.  It can be seen that 

this modified Jones theory is in fair agreement over a large angle of attack 

range, and yields better predictions than does uniform shear theory for both lift 

and moment. 

The pitching moment data in Fig. 19b suggest that the airfoil is in the 

process of stalling since the center of pressure has begun to move.  This is borne 

out by the lift data which has reached a near maximum value of C    ~j  1.4. 

This behavior is contrasted with the data of Fig. 19a which shows twice the lift 

at the same angle of attack with no sign of impending stall. 

The lift and moment data for the airfoil about midway out in the slipstream 
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( 6/A/  =  -52) are compared with the uniform shear and the modified non-uniform 

shear theories in Fig. 19c.  Comparing the uniform shear theory with and without 

the boundary correction, it is seen that the influence of the slipstream boundary 

is to cause a 503» loss in lift.  Again the modified non-uniform shear theory with 

a boundary correction agrees well with the data, though it overestimates the lift 

curve slope.  This same theory yields a good prediction of the airfoil center of 

pressure, as indicated by the slope of the moment curve, but overestimates the 

pitching moment at zero lift.  At this position it is seen that the airfoil is 

approaching stall with a maximum lift coefficient of CL m    0,,9<. 

The two-dimensional airfoil characteristics at ff/M    =   .78. Fig. 19d, are 

quite similar to those at the other positions in the slipstream except that they 

are more pronounced.  In this case the slipstream boundary proximity causes a 

65$ loss in lift and results in markedly non-linear effects.  Both the uniform 

shear theory and the modified non-uniform shear theory predict the lift charac- 

teristics with about equal precision after the boundary correction is applied. 

The latter theory is more accurate for moment predictions, though it still over- 

estimates the pitching moment at zero lift.  Also in this instance the airfoil is 

perhaps beginning to stall at the highest test angles of attack, as suggested by 

the moment data. 

To summarize, the experiments in a two-dimensional slipstream reveal that 

there is a profound effect of the boundary interference.  In these experiments 

where the slipstream height was one chord length, the effect of the boundary 

interference is to cause a 3C$6 - 65^ loss in lift, depending on the airfoil loca- 

tion in the slipstream.  This adverse effect is predicted by the slipstream 

boundary analysis in Section I, 

The effects of slipstream shear on airfoil characteristics are to cause 
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an increase in lift and moment slope, and to cause a non-zero lift and moment at 

zero angle of attack. These are observed in the experiments, and it is found 

that because the experimental slipstream was a non-uniform shear flow, the air- 

foil characteristics are best predicted by a modified version of Jones1 non- 

uniform shear theory.  The modification consisted of adding the lift and moment 

increment due to shear predicted by uniform shear theory. 

With the airfoil at the center of the two-dimensional slipstream, it is 

found that lift coefficients in excess of 3.0 are realized, with no apparent 

signs of stalling.  This might be attributed to the peculiarities associated with 

the experiment, such as unusual three-dimensional boundary layer separation 

patterns causing locally high lift coefficients.  Also it is recognized that 

the turbulence introduced by the shear screens cause alterations in the boundary 

layer so that very small viscous drags are observed.  This might also influence 

the boundary layer separation.  However, if this were the cause, the same high 

lift coefficients should be observed at other positions in the slipstream.  On 

the contrary, rather clear indications of impending stall were observed.  This 

leads to the conclusion that boundary layer separation is being influenced by 

the local flow, and suggests that the derivative of the shear exerts a benefi- 

cial influence on separation. 

Uniform Slipstream 

Experiments were made with the symmetrical Joukowsky airfoil in a uniform 

two-dimensional slipstream in order to have an experimental check on the influence 

of shear and to have a check on the accuracy of the image analysis for predicting 

the influence of boundary interference.  The velocity calibration of this uniform 

slipstream is shown in Fig. Ik.     The data have been corrected for tunnel wall 

interference and are presented in Fig. 21.  The coefficients are based on slip- 
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stream velocity. It will be noted that all of the lift data in Fig. 21 show an 

abrupt loss in lift in the vicinity of oC = 3°, and the moment curves show a 

slight change in slope at this point.  It appears that this stems from a change 

in the boundary layer, such as the sudden appearance of a leading edge separation 

25 
bubble  .  A separation bubble was observed on the airfoil at higher angles of 

attack. 

The data shown by the flagged symbols are those obtained with the tunnel 

side wall boundary layer bleed inoperative.  The difference between the two sets 

of data then indicates the magnitude of the error caused by the side wall suction; 

an increase of about .02.  The theory shown is that of Ref. k  for zero shear; that 

is classical two-dimensional Joukowsky airfoil theory. 

The lift data obtained with no sidewall suction are seen to be, for small 

angles of attack, in exceDlent agreement with the theory when corrected for slip- 

stream boundary interference.  The lack of agreement at higher angles might be 

due to the boundary layer changes occurring at o^si 3°.  However, one would 

expect the experimental lift curve slope to be less than the theoretical on the 

basis of the results obtained in uniform flow (Fig. 17).  The good correlation 

at zero lift demonstrates the accuracy of calculating the slipstream boundary 

interference stemming from airfoil thickness by using source and sink images. 

The moment data obtained with the tunnel boundary layer bleed inoperative 

are not shown.  These data fall on the same curve with the presented data, and 

only demonstrate that the distribution of sidewall suction (Fig, 16) was correct. 

These data show that the center of pressure is further aft than predicted by 

theory. Or alternatively, the experimental slope of the moment curve plotted 

against angle of attack is smaller than predicted.  This observation is in 

keeping with the data obtained in uniform flow. 
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It is significant to note in Fig. 21, that in all cases, the moment data 

indicate impending stall at the highest angle of attack.  Moreover, the data 

suggest that in a uniform slipstream the maximum lift coefficient would be quite 

insensitive to airfoil position in the slipstream.  This is in contrast to the 

data obtained in the non-uniform slipstream (Fig. 19) which show that the max- 

imum lift coefficient is markedly influenced by position, shear, or the derivative 

of the shear. 

Influence of Slipstream Velocity 

The symmetrical airfoil was tested at one position in the slipstream with 

small shear and at the same position in the equivalent uniform slipstream (Fig. 13) 

The purpose of these experiments was to obtain a check with the theory for a case 

with a larger ratio of slipstream to free streaun velocity.  In the other case this 

ratio was about 2 whereas the ratio is about 4 for the slipstreams of Fig. 13« 

The lift and moment data obtained in these two slipstreams are compared with the 

appropriate theory in Fig. 22 and 23. The data in Fig. 22 are seen to agree well 

with uniform shear theory, corrected for slipstream boundary interference, over 

much of the angle of attack range.  Judging from the moment data, the progressive 

lack of agreement at high angles of attack is due to the approaching stall. 

The lift data obtained in the equivalent uniform slipstream. Fig. 23, are 

in fair agreement with the theory.  The theory, corrected for slipstream boundary 

interference, predicts the angle of attack for zero lift of about OC m   ^0, while 

the data shows an angle of about )40.  It appears that in this instance either the 

data are in error or the effect of airfoil thickness on boundary interference is 

overestimated.  The former seems more likely in view of the correlation obtained 

in Fig. 21. 

One question that occurs when considering the influence of shear on airfoil 

characteristics is the determination of where in the slipstream the airfoil should 
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be located to obtain the largest lift. The data in Fig. 19 do not yield any direct 

answer to this question since the coefficients are based on local velocity.  These 

data have beer referred to the average slipstream velocity so that a comparison 

gives a direct indication of lift at the various positions in the slipstream. 

These data are presented in Fig. 2k.    This comparison shows that, for large angle 

of attack, the most desirable locations are either near the slipstream plane of 

symmetry. However, the airfoil showed no indications of stall at the latter 

position so that no firm conclusion can be reached. 

1 
6^ 



a 

!          It 

> 

O   j -I- CO 

L 

f 

r  ■      r  

i 
i L  

? « 

i 

  

1 
% v -—\ 

\ 

% 1 
p \ 

j 

 i  

    

\ 
i   \ ^ 

i 
•  

q 
\ 

^ 
V ! K < 

i 

i V"1 

\ 
\ \   ^ v 

1 

\   

bA. \: 
i 

\ 

..A-H 

^N f  
""' T  -   - -, 

1 i 

. ]       L   ... 
1 s 

\ ä 
^ 

  

i  

! | 

4   i-  
j j          j 1   i   i ;    —1 —I-  ■ 7            1 

1     i     i     j     i     j     j 
^    \ 

i 
i       i 

1     1     i     i     i     i     1     , ^k)  I f 

&.... 1 
      ;               ]        T                ;        ----»                | 1 

  
i 
1 
\ \l   ! 

^ 

;         i 
■         | 

1 X 

^ 

.0..."S 

4 ■     i 

...  .    j. 
i 
j 

1     1     1     1          1     j 1         i    ! 

Ui 

O o 

a> 
L. 

1^ 

65 



m. 

CONCLUSIONS 

The available literature on the two-dimensional problem of airfoils in 

L f. 7 B 
uniform shear '  and non-uniform shear '  show that there are two effects of shear 

on airfoil characteristics. The theories retaining terms involving both airfoil 

4 6 8 
thickness and shear ' '  show that there is an overall increase in lift and pitch- 

ing moment in proportion to the local shear and the airfoil thickness and camber. 

For uniform shear the applicable theory also predicts a small increase in the slope 

of the lift and moment curves due to shear.  Jones theory for thin airfoils in non- 

7 
uniform shear neglects products of the airfoil thickness and shear, and no overall 

increase in lift and moment is predicted.  However, he does predict an increase in 

the slope of the lift and moment curves in proportion to the derivative of the 

shear. 

The experiments made in simulated non-uniform propeller slipstreams quanti- 

tatively substantiate these theoretical results when the theories are corrected 

for slipstream boundary interference on the airfoil.  It is found that the cor- 

rected uniform shear theory yields accurate predictions of the airfoil character- 

istics if the local slipstream shear is fairly uniform and if the airfoil is 

about 1/k  - 3/8 chord lengths from the slipstream plane of symmetry.  The theory 

for thin airfoils in non-uniform shear flow is restricted to slipstreams with 

small changes in shear, while the experiments included large changes in shear. 

In spite of this, theory and experiment are in good agreement for those slip- 

stream regions where the shear is small but the derivative of shear is large. 

When the shear too is large, it is found that by adding the lift and moment in- 

crement predicted by uniform shear theory to the non-uniform shear result, this 

modified theory yields good estimates of the airfoil characteristics.  This 
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modified theory should be used with considerable caution, pending theoretical 

verification of its validity. 

In the experiments in a simulated two-dimensional slipstream, lift co- 

efficients in excess of 3«0 were realized with the symmetrical airfoil in the 

immediate vicinity of the slipstream plane of symmetry.  This result is in 

qualitative agreement with Brenckman's result, and suggests that when the deri- 

vative of shear is large, boundary layer separation is delayed. 

Subsequent experiments with the airfoil at various locations close to the slip- 

stream plane of symmetry have confirmed this result and showed that no unusual 

boundary separation occurred.  In these experiments, the maximum lift was 

obtained with the airfoil slightly below the plane of symmetry.  These results 

will be published in a forthcoming report. 
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APPENDIX I 

The Production of a Specified Two-Dimensional Shear Flow 
by a Non-Uniform Screen 

I 
In order to determine the aerodynamic characteristics of airfoils in shear 

flow, it is necessary to produce a prescribed non-uniform flow in a wind tunnel 

15 with large rates of shear.  As demonstrated by Owen and Zienkiewicz  , this can 

be accomplished using screens or grids with the proper distribution of resistance 

mounted upstream of the test region. They present a method for designing screens 

to produce a known flow with a linear velocity gradient, subject to the restriction 

that the screen only slightly perturbs the flow. The present work is essentially 

an extension of the theory of Ref. 15 to allow for non-linear velocity gradients 

and to include large perturbations from the screen. 

The model used is an initially uniform constant area channel flow (Station 0 

in Fig. 1-1) which subsequently passes through a non-uniform screen. Stations 1 and 

2, and expands to its final configuration for a downstream at Station 3. 

5WW 

Figure I-I  CHANNEL FLOW THROUGH A SCREEN 
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/ Stations 1 and 2 refer to the upstream side and the downstream side of the screen, 

respectively. Using the nomenclature shown in Fig. 1-1, the final velocity distri- 

bution at Station 3 can be considered to be the uniform stream velocity with a per- 

turbation velocity added, 

Introducing the stream function, the boundary conditions to be satisfied are: 

(1) The transverse velocity component is zero at the channel wall 

(2)  The longitudinal velocity component is continuous through the screen 

(3)  The transverse velocity component changes by a factor, ß in 

passing through the screen 

/JMM    _ _/_ /££,] 

{k)    On any streamline, the change in total pressure between Stations 0 

and 3 is equal to the local resistance of the screen at the point 

where it is pierced by the streamline. 

(5)  At Station 3 the static pressure is constant across the channel. 

It is assumed that the fluid is inviscid and incompressible, and that the 

desired velocity distribution can be represented by a Fourier series.  Further, 

The local pressure drop through the screen is taken to be a function only of the 

local velocity ahead of the screen. 

P/*   *? 
- K 

IT,   +*? 
U. 

(l-l) 
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?6 
and it is assumed that Taylor and Batchelor's refraction coefficient  for uniform 

screens applies for non-uniform screens 

_   LI (1-2) 

/77K" 

where     K    is the local screen resistance. 

The first boundary condition is satisfied by the  following form for the 

stream  function. 

(1-3) ^tö f(^/f)=^o/f +  Uo^S~     *7L*n"^     ^(f* "ih) 

4) 

where ^  and ß  are arbitrary coefficients to be determined by application of 

the boundary conditions. Defining 

Afctydy = u, HT 2^_Cn -^ (nn -JP (1-5) 

and applying the second boundary condition to Eq. (1-3) - (1-5)i the result is 
0» .     00 CO 

(1-6) 

Applying the third boundary condition to Eq. (1-3) - (l-k),   another relation 

between the unknown coefficients is obtained. 
eg go 

(1-7) 

^= -X^n 

Combining Bq. (1-6) and (1-7), we obtain the unknown Fourier coefficients in terms 

of the coefficients fixing the desired velocity distribution and the parameter 
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defining the local screen resistance. 

A   -  -ii- (1-8) 

(1-9) 

Equations (1-8) and (1-9) provide the means for fixing the local screen 

resistance in terms of the parameters defining the final velocity distribution 

if it can be assumed that the streamlines are, for practical purposes, straight 

downstream of the screen.  This might be a valid assumption for small values of 

 •  .  However, the present formulation is for large values of this para- 
mo 

meter, sind consideration must be given to the streamline curvature.  A streamline 

is defined by  ^ (^/jf) = Const. , and the deflection of the streamline between 

the screen and downstream infinity (Station 5) is determined by the general rela- 

tion. 

^ft>) = ^(^y.) 

where 'Uv  and /U,  respectively denote the vertical position of the streamline 

at the screen and at infinity.  Applying this to Eq. (I-'O, the equation for the 

streamline becomes 

^r** ̂
o (1-10) 

Substituting Eq. (1-5) in this result, the final equation for the streamline de- 

flection is 

r.^r^^'T^^ (1-11) 
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Along any streamline either upstream or downstream of the screen, the total pressure 

is conserved, and all losses occur at the screen. This requires that upstream of 

the grid 

^ « ^ « ## :   *,*"£*.*•&*-£• fr,v*rV     (I-12) 

*.,£*£:<<,     fr+'ir ["o+^tys)]' 

and downstream of the screen along the streamline defined by Eq. (I-ll), 

(1-13) 

Subtracting Eq. (1-13) from Bq< (1-12) and noting that ^ = "2 > t^ = "Z-^ > 

the loss in total pressure through the screen is given by 

JJ.- d-i^) 

Now the static pressure at infinity upstream and dovmstream is uniform across the 

channel, and the difference in static pressure between these two stations is the 

average screen loss.  Denoting this average loss and the local loss as  K  and 

K , 
1*0-fi ^ />'A« *< = 
rfc «.• 

K fi/*i*r>*n 

the equation for the local screen losses follow from Eq. (I-l^f). 

^v-^] ^"-^^j-e^M ci-i5) 

At this point it is convenient to introduce the dimensionless variables, 

f-i+msSbL 
H, 

fi* ■or. (jjl 

Ja    u-c 

<*.. 
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The longitudinal velocity at the screen is obtained from Eq. (1-3) and (1-5) as 

_uj_ = ,+ _!_ ZZlJtil  ..   £lj!a 
u I+/S Ufi (1-16) 

After some manipulation Eq. (1-15) reduces to 

K 
frWJ'fF* 
L  a^Y = K + \-Vs 

-dzA. 
I+/3 (1-17) 

Finally introducing Eq. (1-2), the equation for the local screen resistance 

becomes 

.«  .* — \ ^ a C-F % ft-X-t}/** - 20+K<-/2- ■/;)£+ (o.zi - /2V tt~i<)p 
(1-18) 

The function,  F(4 ) t may be computed by differentiating Eq. (1-4) and 

using Eq. (1-9) to obtain 

F(C.)' -»'X "C,-*vf*w'5J 
»=/ (1-19) 

The coefficients,  C   , may be computed from the prescribed velocity distri- 

bution using Eq. (1-5).  By the usual rules of Fourier analysis, the coefficients 

are 

Cns 2 ('dZ ( [y(t)-i] ^nvZcit 
O "o (1-20) 

It  is  convenient  also  to express Eq.   (1-11)  in diraensionless   form. 

^ * ITS {**&(*>-$** = ^*pl/ÖO-d dt 
•'a >-'o 

(1-21) 
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Equation (1-17) - (1-21) are the basic equations for the design of a screen 

to produce any desired velocity distribution.  The method of application used in the 

present research is to compute the coefficients,  £    , for the prescribed velocity 

distribution, */    , using Eq. (1-20).  Then for each value of the screen coordinate, 

fl , the corresponding value of the function, F(C2) , is calculated using 

Eq. (1-19). Now in the final flow, there will be a maximum value of the velocity 

distribution, ^ , at the flow coordinate, <£ . The maximum allowable value 

of   J6 \/&m.    TO,   1.0) is assigned at this point and corresponds to the minimum 

local screen resistance that can be tolerated.  Using this value of /Ö and 

£   in Eq. (1-21), the corresponding value of the screen coordinate,  C   » is 

calculated.  These values of /^L«» ^ ■>   t,,  > ?£ » /I» and P^j are then used 

in Sq. (1-17) to solve for the average screen resistance,  /<"   . 

With the average screen resistance, ^  , so determined by the minimum screen 

resistance, one can then proceed to calculate the local screen resistance as a 

function of the prescribed velocity distribution and the screen coordinate, <^  . 

The method used is to start at any convenient value of the screen coordinate and 

to solve Eq. (I-i7) and (1-21) simultaneously for the corresponding screen resis- 

tance parameter, ß      , and the flow coordinate,  £"   .  The technique used for 

this simultaneous solution depends on the type of prescribed velocity distribution. 
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APPENDIX II 

Two-Dimensional Wind Tunnel Wall Corrections for Non-Uniform Streams 

One aspect of this experimental research was concerned with the proper appli- 

cation of corrections to the data to account for the influence of the wind tunnel 

27 
walls. The usual boundary corrections, such as those given by H. Glauert  , are 

obtained using the method of images.  This calculation consists of determining 

the disturbance velocities from the model at the position of the wall, and then 

postulating an array of images which will just cancel these lateral disturbance 

velocities at the wall position.  This image array then satisfies the necessary 

boundary conditions and can be used to calculate the disturbance velocities from 

the wall at the model position. 

The equivalent calculation can be made for two-dimensional models in two- 

dimensional non-uniform flows using the techniques described in the Theory Section. 

In particular, it was shown for uniform shear, that to the first order in thickness 

and angle of attack, the flow non-uniformity does not enter the problem directly 

except through the boundary condition at the slipstream boundary.  Hence the 

problem could be reduced to a uniform flow problem with different boundary condi- 

tions.  An image analysis was made to predict the influence of the slipstream 

boundary on the airfoil characteristics, and consisted of satisfying flow and 

pressure continuously at the slipstream boundary. 

Now the presence of the solid wind tunnel walls in the problem is to intro- 

duce an additional disturbance at the outer edge of the slipstream boundary (see 

Fig. 3b).  Through the continuity requirements, this implies an additional dis- 

turbance velocity within the slipstream.  This disturbance velocity can be cal- 

culated by changing the image array of Fig. 3 slightly.  The   -J -array (Fig. 3c) 
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remains unchanged since this array still satisfies the slipstream boundary- 

conditions.  However, the magnitude of the parameter,  3^   , will change.  The 

equivalent airfoil duplicating the disturbance velocities exterior to the slipstream 

is replaced with an array of airfoils with a lift of  1)' L       , and this array is 

such that there is no flow through the wind tunnel walls. (Fig. II-l).  The effect 

of the walls on the model is obtained by satisfying flow and pressure continuity 

at the slipstream boundary, thereby fixing the magnitude of the parameter, ^  , 

in terms of the  ^   image array. 

It can be seen in Fig. II-l that this array satisfies the condition that 

there be no flow through the wall, and can be used to calculate the wall distur- 

bance velocities exterior to the slipstream.  Referring also to Fig. 3, the 

boundarj conditions to be satisfied at the slipstream boundary are 

-^y ^U^y, 

u0 u' 
MZO,    =   ^ U' (II-l) 

Neglecting the details of the development, it can be shown that if the airfoil 

thickness effects are negligible, these conditions are satisfied for 

-*•.(£/ 
'♦*,<. 

' \ä m 
Mt    /-^v 

Uo  / + C 

(11-2) 

(11-3) 

where  the  subscript,   AXT    ,   refers  to solid wall  correction. 

by EL,. (27), and   /<, and Q.       are given by 

*    -    l + C 

K. is given 

(11-4) 
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B='(i)(l-^\lr   |f,.^-f#*|« ^If.-lA^.I1 

(II-5) 

(II-6) 

/ / 

v^here  ft^ S H-/c. .  The series in Eqs. II-5 and II-6 have been evaluated on a 

high speed computing machine for representative values of H> (O     and  e   re- 

taining the first 100 terms in the series.  The calculated values of  fc are 

plotted in Fig. II-2. 

The disturbance velocities at the model can now be calculated using the 

image array of Fig. 3c, noting that the parameter, , fixes the image 

strength.  The results are those given by Eq. (29) and (31)«  It can be seen then 

that the influence of the solid walls enters only through the parameter fixing 

the image strength and the wall corrections are 

cL i 
1/4 +'*r)z(2 7i-l-e)i 

. y- 1 . ,y- I  (II-7) 

(II-8) 

Theae corrections can be obtained from Figs. 6 and 8 by substituting the quantity, 

■J      —     i) , for j),  in the figures. 
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